Генетика человека. методы исследования генетики человека: генеалогический и близнецовый. урок 10

Значение и достижения

Успехи в развитии генетики человека сделали возможными предупреждение и лечение наследственных заболеваний. Один из эффективных методов их предупреждения — медико-генетическое консультирование с предсказанием риска появления больного в потомстве лиц, страдающих данным заболеванием или имеющих больного родственника. Достижения биохимической генетики человека раскрыли первопричину (молекулярный механизм) многих наследственно обусловленных дефектов, аномалий обмена веществ, что способствовало разработке методов экспресс-диагностики, позволяющих быстро и рано выявлять больных, и лечения многих прежде неизлечимых наследственных болезней. Чаще всего лечение состоит во введении в организм веществ, не образующихся в нём вследствие генетического дефекта, или в составлении специальных диет, из которых устранены вещества, оказывающие токсическое действие на организм в результате наследственно обусловленной неспособности к их расщеплению. Многие генетические дефекты исправляются с помощью своевременного хирургического вмешательства или педагогической коррекции. Практические мероприятия, направленные на поддержание наследственного здоровья человека, на охрану генофонда человечества, осуществляются через систему медико-генетических консультаций. Их основная цель — информировать заинтересованных лиц о вероятности риска появления в потомстве больных. К медико-генетическим мероприятиям относится также пропаганда генетических знаний среди населения, так как это способствует более ответственному подходу к деторождению. Медико-генетическая консультация воздерживается от мер принудительного или поощрительного характера в вопросах деторождения или вступления в брак, принимая на себя лишь функцию информации. Большое значение имеет система мер, направленных на создание наилучших условий для проявления положительных наследственных задатков и предотвращение вредных воздействий среды на наследственность человека.

Генетика человека представляет собой естественнонаучную основу борьбы с расизмом, убедительно показывая, что расы — это формы адаптации человека к конкретным условиям среды (климатическим и иным), что они отличаются друг от друга не наличием «хороших» или «плохих» генов, а частотой распространения обычных генов, свойственных всем расам. Генетика человека показывает, что все расы равноценны (но не одинаковы) с биологической точки зрения и обладают равными возможностями для развития, определяемого не генетическими, а социально-историческими условиями. Констатация биологических наследственных различий между отдельными людьми или расами не может служить основанием для каких-либо выводов морального, юридического или социального порядка, ущемляющих права этих людей или рас.

Близнецовый способ

Такой метод изучения генетики человека предполагает наличие пар близнецов. Объекты исследуются, ученые выявляют, каковы сходства между ними, в чем заключаются различия. Близнецами считают только таких детей, которые были выношены и одновременно появились на свет у одной матери. Различают моно- и дизиготные формы. В первом случае исходный материал – одна зигота, при этом генотипы совпадают, пол – тоже. При двух зиготах генотипы близнецов отличны, а пол может совпадать или нет.

Когда для изучения генетики человека используют метод близнецов, сперва выявляют зиготность полисимптомным подходом. Оценивают людей на сходство по признакам, для которых установлено наследование, а влияние среды на них минимально. Когда удается определить точно зиготность, производят сопоставление индивидуумов по конкретному признаку.

Конкордантная пара выявляется, если некоторый признак присутствует у обоих близнецов. При его отсутствии у одного из близнецов говорят о дискордантной паре. Если для изучения генетики человека используют метод близнецов, учитывают, что полученная информация наиболее точно позволяет оценить, какова роль наследования, насколько сильно влияет среда на коррекцию определенного признака. Ученые могут установить, какие признаки передаются по наследству, почему гены отличаются по пенетрантности. В рамках изучения можно оценить, насколько эффективно влияют на особь внешние факторы – от медикаментозных до подходов к воспитанию.

Закон расщепления, или второй закон Менделя

Г. Мендель дал возможность самоопылиться гибридам первого поколения. У полученных таким образом гибридов второго поколения проявился не только доминантный, но и рецессивный признак. Результаты опытов приведены в таблице.

Признаки Доминантные Рецессивные Всего
Число % Число %
Форма семян 5474 74,74 1850 25,26 7324
Окраска семядолей 6022 75,06 2001 24,94 8023
Окраска семенной кожуры 705 75,90 224 24,10 929
Форма боба 882 74,68 299 25,32 1181
Окраска боба 428 73,79 152 26,21 580
Расположение цветков 651 75,87 207 24,13 858
Высота стебля 787 73,96 277 26,04 1064
Всего: 14949 74,90 5010 25,10 19959

Анализ данных таблицы позволил сделать следующие выводы:

  1. единообразия гибридов во втором поколении не наблюдается: часть гибридов несет один (доминантный), часть — другой (рецессивный) признак из альтернативной пары;
  2. количество гибридов, несущих доминантный признак, приблизительно в три раза больше, чем гибридов, несущих рецессивный признак;
  3. рецессивный признак у гибридов первого поколения не исчезает, а лишь подавляется и проявляется во втором гибридном поколении.

Явление, при котором часть гибридов второго поколения несет доминантный признак, а часть — рецессивный, называют расщеплением. Причем, наблюдающееся у гибридов расщепление не случайное, а подчиняется определенным количественным закономерностям. На основе этого Мендель сделал еще один вывод: при скрещивании гибридов первого поколения в потомстве происходит расщепление признаков в определенном числовом соотношении.

Генетическая схема закона расщепления Менделя

(А — желтый цвет горошин, а — зеленый цвет горошин):

P Aaжелтые × Aaжелтые
Типы гамет     A    a      A    a 
F2 AA желтые  Aa желтые 75%   Aa желтые  aa зеленые 25%

Генетика пола

Половая принадлежность каждой из особи живых существ имеет особый комплекс признаков, которые определяются генами, находящимися внутри соответствующих хромосом. Хромосомы в человеческом теле располагаются парно, образуя характерные диплоидные наборы. Раздельнополым особям свойственен неодинаковый хромосомный набор, отличающий пол самок и самцов. Такие различия выражаются в наличии разных хромосом:

  • ХХ – женская особь;
  • XY – мужская особь.

Данные половые хромосомы располагаются попарно в сперматозоидах и яйцеклетках. X(икс) – хромосомы характеризуются большой подвижностью и активностью. Каждая из них несет в себе определенные признаки. Y(игрек) – хромосомы отличаются меньшей активностью.

Аутосомами именуют парный вид хромосом, схожий в женских и мужских телах. Клетки человеческого тела содержат 44 аутосомы,  расположенные в 22 парах.

Кариотип

Кариотипом именуют количественный и качественный хромосомный набор. Мужской кариотип имеет одну крупную равноплечую половую хромосому (Х), а другую — маленькую палочковидную —  Y. Женский организм отличается гомогамностью, так как имеет одинаковые гаметы, мужской же – гетерогамен, так как содержит гаметы неодинаковых знаков. Есть в природе и исключения, касаемые кариотипа. Так, гомогаметность свойственна самцам некоторых:

  • рыб;
  • бабочек;
  • птиц.

Курам характерен кариотип – XY, а петухам -XX.

Процесс формирования

Формирование женских и мужских клеток с соответствующим им кариотипом происходит так:

  • 44аутосомы+XY (самцы);
  • 44аутосомы + XX (самки).

В период деления и созревания человеческих гамет образуются:

  • 22+X либо 22+Y (мужчины);
  • 22+Х (женщины). 

Другими словами, в женском теле формируется один вид гамет, которые содержат исключительно Х-хромосомы. Клетки мужчин образуют и содержат два вида гамет с Y- и Х-хромосомами. 

На формирование пола ребенка оказывает влияние проникновение в яйцеклетку сперматозоида, содержащего ту или иную хромосомы. Так, если первым оплодотворяет женскую половую клетку сперматозоид с Y-хромосомой, то формируется мальчик. Когда же первым проникает сперматозоид с Х-хромосомой — формируется девочка. 

Как было отмечено ранее, Y-хромосома считается инертной в генетическом отношении, так как и не содержит большого количества активных генов. Некоторым видам животных свойственна конъюгация по Y-хромосоме, поэтому у них есть идентичные гены.

Большинству растений характерна гермафродитность (сочетание в одном организме свойств обоих полов). Большая часть гермафродитов размножается с помощью самооплодотворения (самоопыления), но строение половых органов отдельных видов растений допускает перекрестное оплодотворение.

Половая принадлежность птиц определяется слиянием яйцеклетки и сперматозоида (оплодотворение). Данный способ именуют «прогамным».

Помимо него есть гапло-диплоидийный механизм образования пола. Он характерен:

  • муравьям;
  • осам;
  • пчелам.

Данные виды животных лишены половых хромосом. Причем, самцам свойственна гаплоидность — развитие из неоплодотворенных яиц, а самкам – диплоидность, выражающаяся развитием из оплодотворенных яиц. Таким образом, самцы (трутни), не имеют отцов, но имеют дедов по материнским линиям. У трутней в сперматогенезе не идет редукция числа хромосом. 

В результате оплодотворенная яйцеклетка развивает либо «матку» — крупную, способную к размножению самку, либо стерильную рабочую самку. Данный процесс находится в прямой зависимости от способа выкармливания личинок рабочими особями.

Базы данных генов человека

Задача по составлению каталога всех генов по-прежнему не решена. Проблема заключается в том, что за последние 15 лет только две исследовательские группы составили список доминантных генов: RefSeq, которая поддерживается Национальным центром биотехнологической информации (NCBI) при Национальных институтах здоровья (NIH), и Ensembl/Gencode, которая поддерживается Европейской молекулярно-биологической лабораторией (EMBL). Однако, несмотря на большой прогресс, сейчас в каталогах различается количество белок-колирующих генов, генов длинных некодирующих РНК, псевдогенов, а также варьирует количество антисмысловых РНК и других некодирующих РНК (табл. 2). Каталоги еще дорабатываются: например, в прошлом году сотни генов, кодирующих белок, были добавлены или удалены из списка Gencode. Эти разногласия объясняют проблему создания полного каталога человеческих генов.

В 2017 году была создана новая база данных генов человека — CHESS. Примечательно, что она включает все белок-кодирующие гены как Gencode, так и RefSeq, так что пользователям CHESS не нужно решать, какую базу данных они предпочитают. Бóльшее количество генов может вызывать больше ошибок, но создатели считают, что бóльший набор окажется полезным при исследовании болезней человека, которые еще не отнесены к генетическим. Набор генов CHESS в настоящее время в версии 2.0 еще не окончательный, и, безусловно, создатели работают над его усовершенствованием.

Таким образом, все еще неизвестно, сколько всего генов у человека. Существует ряд проблем, затрудняющих эту задачу. Например, многие гены (особенно, гены днкРНК), видимо, имеют высокую тканеспецифичность. Из этого следует, что пока ученые подробно не исследуют все типы клеток человека, они не могут быть уверены, что обнаружили все человеческие гены и транскрипты. Безусловно, сегодня знания о человеческих генах стали значительно обширнее, чем в начале проекта «Геном человека», а технологии совершеннее. Это дает надежду на то, что в скором времени мы узнаем точный ответ на поставленный вопрос.

Зачем нам нужны все эти знания?

Во всем мире уже давно принято говорить о планировании беременности. Родители, готовясь к зачатию, должны пройти полное медицинское обследование, чтобы предотвратить возможные проблемы в будущем. Начинать планирование здорового малыша надо с визита к врачу-генетику: он составит родословную, исследует кариотип обоих родителей и определит, не входит ли их семья в группу риска. А с помощью современных методов пренатальной диагностики можно исключить большую часть врожденной и наследственной патологии у будущего малыша еще во время беременности

Специалистам важно исключить в первую очередь хромосомные болезни: синдром Дауна (наличие лишней 21-й хромосомы), синдром Клайнфельтера (лишняя Х-хромосома), синдром Тернера (недостаток Х-хромосомы). Если в семье были случаи генетических болезней, таких, как гемофилия, фенилкетонурия, мышечная дистрофия

Дюшенна, муковисцидоз, будущим родителям стоит запастись терпением и продолжить обследование.

Словарь

Врожденный. Не то же самое, что наследственный или генетический. Пороки развития, аномалии и болезни, которые вызывают у будущего ребенка вирусы (например, краснухи, токсоплазмоза), или гормональные нарушения (сахарный диабет) могут появиться у малыша уже к моменту рождения. Генетические или наследственные болезни, «записанные» в ДНК клеток, являются лишь одной из форм врожденных.

Ген. Частичка ДНК, отвечающая за передачу наследственных признаков.

Доминантный. Так называется генетический признак, который проявляется, подавляя информацию другого признака на парной хромосоме.

Кариотип. Так называется карта хромосом человека.

Мутация. Изменение частички ДНК, то есть гена, которое вызывает появление нового признака (болезни, например).

Рецессивный. Вариант наследственного признака, который проявляется, только если на парной хромосоме есть точно такой же признак.

Хромосома. Носитель генетической информации, расположенный в ядре каждой клетки человека.

Валентина Гнетецкая,врач-генетик, заведующая отделением пренатальной диагностикиЦентра планирования семьи и репродукции г. МосквыСтатья из январского номера журнала

Общее представление

Генетика человека основана на общих закономерностях – таковые универсальны, их можно применять к самым разным видам и особям, и человек не является исключением. В настоящее время выявлено более 3 000 признаков, присущих человеку. Они затрагивают морфологию, биохимию, физиологию. 120 из них имеют связь с половой принадлежностью. Ученые смогли выявить и исследовать 23 типа генетического сцепления. Удалось составить карту хромосом, на которой зафиксированы многие гены.

Особенного внимания заслуживают исследования, проведенные в рамках уточнения генетики человека, посвященные малочисленным популяциям, то есть таким социумам, в которых не более полутора тысяч человек. Ученые установили, что для подобной группы людей частота заключения браков внутри превышает 90 %, следовательно, всего лишь за один век все участники становятся друг другу троюродными родственниками. Исследования показали, что в таких условиях повышается риск рецессивных мутаций. Порядка восьми процентов из них летальны, некоторые связаны со строением глаз или скелета. Мутации зачастую наблюдаются уже на этапе формирования плода, что приводит к его преждевременной гибели – еще до родов или сразу после появления на свет.

Закон независимого комбинирования (наследования) признаков, или третий закон Менделя

Организмы отличаются друг от друга по многим признакам. Поэтому, установив закономерности наследования одной пары признаков, Г. Мендель перешел к изучению наследования двух (и более) пар альтернативных признаков. Для дигибридного скрещивания Мендель брал гомозиготные растения гороха, отличающиеся по окраске семян (желтые и зеленые) и форме семян (гладкие и морщинистые). Желтая окраска (А) и гладкая форма (В) семян — доминантные признаки, зеленая окраска (а) и морщинистая форма (b) — рецессивные признаки.

Скрещивая растение с желтыми и гладкими семенами с растением с зелеными и морщинистыми семенами, Мендель получил единообразное гибридное поколение F1 с желтыми и гладкими семенами. От самоопыления 15-ти гибридов первого поколения было получено 556 семян, из них 315 желтых гладких, 101 желтое морщинистое, 108 зеленых гладких и 32 зеленых морщинистых (расщепление 9:3:3:1).

Анализируя полученное потомство, Мендель обратил внимание на то, что: 1) наряду с сочетаниями признаков исходных сортов (желтые гладкие и зеленые морщинистые семена), при дигибридном скрещивании появляются и новые сочетания признаков (желтые морщинистые и зеленые гладкие семена); 2) расщепление по каждому отдельно взятому признаку соответствует расщеплению при моногибридном скрещивании. Из 556 семян 423 были гладкими и 133 морщинистыми (соотношение 3:1), 416 семян имели желтую окраску, а 140 — зеленую (соотношение 3:1)

Мендель пришел к выводу, что расщепление по одной паре признаков не связано с расщеплением по другой паре. Для семян гибридов характерны не только сочетания признаков родительских растений (желтые гладкие семена и зеленые морщинистые семена), но и возникновение новых комбинаций признаков (желтые морщинистые семена и зеленые гладкие семена).

Р АABBжелтые, гладкие × aаbbзеленые, морщинистые
Типы гамет    AB      ab 
F1 AaBbжелтые, гладкие, 100%
P АaBbжелтые, гладкие × AаBbжелтые, гладкие
Типы гамет    AB     Ab     aB     ab      AB     Ab     aB     ab 

Генетическая схема закона независимого комбинирования признаков:

Гаметы: AB Ab aB ab
 
AB AABBжелтыегладкие AABbжелтыегладкие AaBBжелтыегладкие AaBbжелтыегладкие
Ab AABbжелтыегладкие AАbbжелтыеморщинистые AaBbжелтыегладкие Aabbжелтыеморщинистые
aB AaBBжелтыегладкие AaBbжелтыегладкие aaBBзеленыегладкие aaBbзеленыегладкие
ab AaBbжелтыегладкие Aabbжелтыеморщинистые aaBbзеленыегладкие aabbзеленыеморщинистые

Анализ результатов скрещивания по фенотипу: желтые, гладкие — 9/16, желтые, морщинистые — 3/16, зеленые, гладкие — 3/16, зеленые, морщинистые — 1/16. Расщепление по фенотипу 9:3:3:1.

Анализ результатов скрещивания по генотипу: AaBb — 4/16, AABb — 2/16, AaBB — 2/16, Aabb — 2/16, aaBb — 2/16, ААBB — 1/16, Aabb — 1/16, aaBB — 1/16, aabb — 1/16. Расщепление по генотипу 4:2:2:2:2:1:1:1:1.

Если при моногибридном скрещивании родительские организмы отличаются по одной паре признаков (желтые и зеленые семена) и дают во втором поколении два фенотипа (21) в соотношении (3 + 1)1, то при дигибридном они отличаются по двум парам признаков и дают во втором поколении четыре фенотипа (22) в соотношении (3 + 1)2. Легко посчитать, сколько фенотипов и в каком соотношении будет образовываться во втором поколении при тригибридном скрещивании: восемь фенотипов (23) в соотношении (3 + 1)3.

Если расщепление по генотипу в F2 при моногибридном поколении было 1:2:1, то есть было три разных генотипа (31), то при дигибридном образуется 9 разных генотипов — 32, при тригибридном скрещивании образуется 33 — 27 разных генотипов.

Третий закон Менделя справедлив только для тех случаев, когда гены анализируемых признаков находятся в разных парах гомологичных хромосом.

Немного о РНК

Проект «Геном человека» показал, что молекулы РНК также важны для жизни, как и ДНК. Внутри клеток существует множество РНК (рис. 2). Изначально РНК подразделяются на некодирующие РНК (нкРНК), которые не транслируются в белки, и кодирующие РНК (мРНК), служащие матрицей для синтеза полипептидных цепей белка. Некодирующие РНК имеют более сложную классификацию. Они бывают инфраструктурными и регуляторными. Инфраструктурные РНК представлены рибосомными РНК (рРНК) и транспортными РНК (тРНК). Молекулы рРНК синтезируются в ядрышке и составляют основу рибосомы, а также кодируют белки субъединиц рибосомы. После того, как рРНК полностью собраны, они переходят в цитоплазму, где в качестве ключевых регуляторов трансляции, участвуют в чтении кода мРНК. Последовательность из трех азотистых оснований в мРНК указывает на включение определенной аминокислоты в последовательность белка. Молекулы тРНК, приносят указанные аминокислоты на рибосомы, где синтезируется белок.

Дополнительно о РНК читайте в статьях «Биомолекулы»: «Обо всех РНК на свете, больших и малых», «Кодирующие некодирующие РНК» и «Власть колец: всемогущие кольцевые РНК» .

Рисунок 2. Виды РНК

рисунок автора статьи

Регуляторные нкРНК очень широко представлены в организме, классифицируются в зависимости от размера и выполняют ряд важных функций (табл. 1).

Таблица 1. Некодирующие регуляторные РНК
Название Обозначение Длина Функции
Длинные некодирующие РНК днкРНК, lncRNA 200 нуклеотидов 1. Регулируют избирательное метилирование ДНК, направляя ДНК-метилтрансферазу
2. Руководят избирательной посадкой репрессорных комплексов polycomb
Малые РНК Малые ядерные РНК мяРНК, snRNA 150 нуклеотидов 1. Участвуют в сплайсинге
2. Регулируют активность факторов транскрипции
3. Поддерживают целостность теломер
Малые ядрышковые РНК мякРНК, snoRNA 60–300 нуклеотидов 1. Участвуют в химической модификации рРНК, тРНК и мяРНК
2. Возможно, участвуют в стабилизации структуры рРНК и защите от действия гидролаз
Малые интерферирующие РНК миРНК, siRNA 21–22 нуклеотидов 1. Осуществляют антивирусную иммунную защиту
2. Подавляют активность собственных генов
Микро-РНК мкРНК, miRNA 18–25 нуклеотидов Подавляют трансляцию путем РНК-интерференции
Антисмысловые РНК asRNA 1. Короткие: менее 200 нуклеотидов
2. Длинные: более 200 нуклеотидов
Блокируют трансляцию, образуя гибриды с мРНК
РНК, связанные с белками Piwi piRNA, piwiRNA 26–32 нуклеотидов Их также называют «стражами генома», они подавляют активность мобильных генетических элементов во время эмбриогенеза

Предопределена ли сексуальность?

Как пишут исследователи в своей работе, опубликованной в журнале Science, сексуальное поведение – это сложное поведение, в котором генетика определенно играет свою роль, однако не является главной. Также необходимо учесть, что генетические исследования, проведенные за последние несколько десятилетий, касались нескольких сотен человек – и в основном мужчин. Другие исследования выявили связь сексуальной ориентации с такими факторами окружающей среды как воздействие гормонов до рождения и наличие старших братьев.

Биология поведения человека – это невероятно сложная тема для изучения

Тем не менее, специалисты приветствуют полученные в ходе исследования данные, так огромное количество людей в мире хотят понять биологию гомосексуальности. В прошлом эта тема была под запретом и сегодня, наконец, расцветает. Так или иначе, несмотря на громкие заголовки в СМИ о том, что гена сексуальной ориентации не существует, эта работа будет далеко не последней в поисках ответа на все вопросы о сексуальной ориентации человека. Не исключено, что данные нового исследования являют собой анализ рискованного поведения или открытости новому опыту, так как испытуемые у которых был по крайней мере один однополый опыт, с большей вероятностью сообщали о большем количестве сексуальных партнеров, курении марихуаны и употреблении алкоголя.

Как пишет Scientific American, авторы исследования считают, что им удалось увидеть связь между сексуальной ориентацией и сексуальной активностью, однако допускают, что гены не предсказывают ориентацию. Учитывая всю сложность этой довольно деликатной темы, остается много вопросов какие именно факторы влияют на сексуальную ориентацию и почему. Это значит, что в будущем появится еще больше научных исследований. Будем ждать.

Секвенирование нового поколения (NGS)

Появление высокопроизводительных методов (в ходе такого секвенирования миллионы фрагментов ДНК из одного образца секвенируются одновременно) или секвенирования нового (следующего) поколения (next-generation sequencing, NGS) позволило значительно ускорить поиск функциональных участков генома . Биотехнологические компании разработали и коммерциализировали различные платформы для NG-секвенирования, позволяющие секвенировать от 1 млн до десятков млрд коротких последовательностей (ридов, reads) длиной 50–600 нуклеотидов каждая. К наиболее популярным платформам относятся такие, как Illumina и IonTorrent, использующие амплификацию ДНК с помощью ПЦР , а также платформы одномолекулярного секвенирования, такие как Helicos Biosciences HeliScope, Pacific Biosciences SMRT (single molecule real-time sequencing), и нанопорового секвенирования Oxford Nanopore, осуществляющие секвенирование в реальном времени и позволяющие прочитывать значительно более длинные риды — до 10–60 тыс. нуклеотидов. Кроме того, изобретение секвенирования РНК (RNA-seq) в 2008 году, которое создавалось для количественного определения экспрессии генов, также способствовало обнаружению транскрибируемых последовательностей, как кодирующих, так и некодирующих РНК .

Благодаря NGS, базы данных днкРНК и других генов РНК (таких как микро-РНК) резко выросли за десятилетие, и текущие каталоги генов человека теперь содержат больше генов, кодирующих РНК, чем белки (табл. 2).

Таблица 2. Количество разных типов генов в следующих базах данных: Gencode, Ensembl, RefSeq, CHESS
Типы генов
Белок-кодирующие гены 19 901 20 376 20 345 21 306
Гены длинных некодирующих РНК 15 779 14 720 17 712 18 484
Антисмысловые РНК 5501 28 2694
Другие некодирующие РНК 2213 2222 13 899 4347
Псевдогены 14 723 1740 15 952
Общее число транскриптов 203 835 203 903 154 484 323 827

Рисунок 3. Последовательность ДНК, получаемая после секвенирования человеческого генома

В ходе секвенирования РНК обнаружилось, что альтернативный сплайсинг, альтернативное инициирование транскрипции и альтернативное прерывание транскрипции проиcходят гораздо чаще, чем полагали, затрагивая до 95% человеческих генов. Следовательно, даже если известно местоположение всех генов, сначала нужно выявить все изоформы этих генов, а также определить, выполняют ли эти изоформы какие-либо функции или они просто представляют собой ошибки сплайсинга.

Беременность двойней

Беременность идентичными близнецами, которые возникают из одной оплодотворенной яйцеклетки, которая делится на два эмбриона, происходит случайно и не имеет никакой взаимосвязи с генетической предрасположенностью. Но беременность, так называемыми, дизиготными близнецами, которые возникают в случае слияния двух отдельных яйцеклеток и двух сперматозоидов, кажется, обусловлена генетически. Поскольку тенденция к овуляции более одной яйцеклетки за раз является унаследованной.

Вопрос состоит в том: является ли двойная или множественная овуляция рецессивным или доминирующим геном. Это сложно определить, поскольку зачатых близняшек было больше, чем рожденных. Один из двойняшек может погибнуть в материнской утробе, или у женщины может случится выкидыш на раннем сроке, и она даже может не знать, что вынашивала двойню. Поскольку специалисты по генетике не знают, точного количества многоплодных беременностей, то и выяснить, является ли ген, отвечающий за это явление, доминантным нет возможности.

Передача половых хромосом от родителей к однояйцевым и двуяйцевым детям. Различными цветами изображены различные локусы

Существует такое огромное количество возможных комбинаций ваших генов, что невозможно предугадать, каким будет ваш ребенок. Но фантазировать по этому поводу – одно из удовольствий беременности. Будут ли у ребенка ваши кудри и глаза отца, а, может, у него будут такие же милые веснушки, как у вашей матери…  Кроме того, по мере взросления личность и внешность вашего ребенка будут меняться, и вы всегда будете с интересом наблюдать за этими переменами.

Ноябрь 17, 2017

Автор admin
Комментариев:

Биохимия и статистика

Онтогенетический метод, актуальный для исследования генетики человека, предполагает изучение с применением подходов биохимии для выявления проблем метаболизма и сбоев, индивидуальных для конкретного объекта, если таковые объясняются мутацией. В организме объекта можно наблюдать промежуточные продукты обменных реакций, и их выявление в органических жидкостях получило широкое применение в подходах к диагностике патологических состояний.

Статистика и исследование популяций – это такой подход в современной генетике, который предполагает изучение генетического популяционного состава. Собрав достаточно объемную базу данных, можно оценить, насколько высок шанс появления особи, имеющей заданный фенотип, в изучаемой группе людей. Можно вычислить частоту генных аллелей, генотипов.

Еще один подход, применимый в наши дни – молекулярная генетика. Это та самая генная инженерия, о которой слышали многие, хотя далеко не всякий человек представляет себе, в чем заключается суть работы ученых. Инженерия заключается в выделении генов и создании их клонов, формировании рекомбинантных молекул и помещении их в живую клетку. Матрицы, полученные при синтезировании новых нуклеиновых кислотных цепей, используются для репликации. Молекулярная генетика активно использует подход секвенирования и некоторые другие высокотехнологичные способы.

Биохимический метод

Позволяет обнаружить нарушения в обмене веществ, вызванные изменением генов и, как следствие, изменением активности различных ферментов. Наследственные болезни обмена веществ подразделяются на болезни углеводного обмена (сахарный диабет), обмена аминокислот, липидов, минералов и др.

Фенилкетонурия относится к болезням аминокислотного обмена. Блокируется превращение незаменимой аминокислоты фенилаланин в тирозин, при этом фенилаланин превращается в фенилпировиноградную кислоту, которая выводится с мочой. Заболевание приводит к быстрому развитию слабоумия у детей. Ранняя диагностика и диета позволяют приостановить развитие заболевания.

Ген счастья

Вот уже все последнее десятилетие генетика бьется над доказательством, что для счастливой жизни нужны соответствующие гены, а точнее, так называемый ген 5-HTTLPR, который отвечает за транспортировку серотонина («гормона счастья»).

В прошлом столетии эта теория считалась бы безумной, но сегодня, когда уже открыты гены, отвечающие за облысение, долголетие или влюбленность, ничего уже не кажется невозможным.

Чтобы доказать свою гипотезу, ученые Лондонской медицинской школы и школы экономики опросили несколько тысяч человек. По итогам, волонтеры, у которых было две копии гена счастья от обоих родителей, оказались оптимистами и не склонными к какой-либо депрессии людьми. Результаты исследования были опубликованы Ян-Эммануэлем де Неве в журнале Journal of Human Genetics. При этом ученый подчеркнул, что вскоре могут быть найдены и другие «счастливые гены».

Тем не менее, если у вас, по каким-то причинам, долгое время держится плохое настроение, не стоит слишком уповать на свой организм и винить матушку-природу, в том, что она «обделила счастьем». Ученые утверждают – человеческое счастье зависит от многих фактором: «Если вам не везет, вы потеряли работу или, расстались с близкими, то это будет гораздо более сильный источник несчастья, независимо от того какое количество каких генов у вас есть», — заявил де Неве.

Цитогенетический метод

Основан на изучении хромосом человека в норме и при патологии. В норме кариотип человека включает 46 хромосом — 22 пары аутосом и две половые хромосомы. Использование данного метода позволило выявить группу болезней, связанных либо с изменением числа хромосом, либо с изменениями их структуры. Такие болезни получили название хромосомных.

Материалом для кариотипического анализа чаще всего являются лимфоциты крови. Кровь берется у взрослых из вены, у новорожденных — из пальца, мочки уха или пятки. Лимфоциты культивируются в особой питательной среде, в состав которой, в частности, добавлены вещества, «заставляющие» лимфоциты интенсивно делиться митозом. Через некоторое время в культуру клеток добавляют колхицин. Колхицин останавливает митоз на уровне метафазы. Именно во время метафазы хромосомы являются наиболее конденсированными. Далее клетки переносятся на предметные стекла, сушатся и окрашиваются различными красителями. Окраска может быть а) рутинной (хромосомы окрашиваются равномерно), б) дифференциальной (хромосомы приобретают поперечную исчерченность, причем каждая хромосома имеет индивидуальный рисунок). Рутинная окраска позволяет выявить геномные мутации, определить групповую принадлежность хромосомы, узнать, в какой группе изменилось число хромосом. Дифференциальная окраска позволяет выявить хромосомные мутации, определить хромосому до номера, выяснить вид хромосомной мутации.

Купить проверочные работы по биологии

В тех случаях, когда необходимо провести кариотипический анализ плода, для культивирования берутся клетки амниотической (околоплодной) жидкости — смесь фибробластоподобных и эпителиальных клеток.

К числу хромосомных заболеваний относятся: синдром Клайнфельтера, синдром Тернера-Шерешевского, синдром Дауна, синдром Патау, синдром Эдвардса и другие.

Больные с синдромом Клайнфельтера (47, ХХY) всегда мужчины. Они характеризуются недоразвитием половых желез, дегенерацией семенных канальцев, часто умственной отсталостью, высоким ростом (за счет непропорционально длинных ног).

Синдром Тернера-Шерешевского (45, Х0) наблюдается у женщин. Он проявляется в замедлении полового созревания, недоразвитии половых желез, аменорее (отсутствии менструаций), бесплодии. Женщины с синдромом Тернера-Шерешевского имеют малый рост, тело диспропорционально — более развита верхняя часть тела, плечи широкие, таз узкий — нижние конечности укорочены, шея короткая со складками, «монголоидный» разрез глаз и ряд других признаков.

Синдром Дауна — одна из самых часто встречающихся хромосомных болезней. Она развивается в результате трисомии по 21 хромосоме (47; 21, 21, 21). Болезнь легко диагностируется, так как имеет ряд характерных признаков: укороченные конечности, маленький череп, плоское, широкое переносье, узкие глазные щели с косым разрезом, наличие складки верхнего века, психическая отсталость. Часто наблюдаются и нарушения строения внутренних органов.

Хромосомные болезни возникают и в результате изменения самих хромосом. Так, делеция р-плеча аутосомы №5 приводит к развитию синдрома «крик кошки». У детей с этим синдромом нарушается строение гортани, и они в раннем детстве имеют своеобразный «мяукающий» тембр голоса. Кроме того, наблюдается отсталость психомоторного развития и слабоумие.

Чаще всего хромосомные болезни являются результатом мутаций, произошедших в половых клетках одного из родителей.

Понравилась статья? Поделиться с друзьями:
Психея
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:
Нажимая на кнопку "Отправить комментарий", я даю согласие на обработку персональных данных и принимаю политику конфиденциальности.